Skip to content

Faculty & Staff


Chemistry faculty and staff

Top Navigation

Main Navigation

  • EWU Home
  • College of Science, Technology, Engineering & Mathematics
  • Programs of Study
  • Chemistry and Biochemistry
  • Faculty & Staff
  • Main Content

    The Department of Chemistry and Biochemistry is located on the second floor of the Science Building, on the Cheney campus. The main department office is in SC226 in the Science Building. To obtain answers to questions not covered by this web site, please feel free to contact us by phone or email.

    Eric Abbey, PhD

    Assistant Professor of Chemistry
    Science Building, SCI 206A
    Phone: 509.359.7476
    Curriculum Vitae

    Peter Bilous, PhD.

    Professor of Chemistry
    Science Building, SCI 193A
    Phone: 509.359.7935
    Curriculum Vitae

    PHD, McGill University

    Research interests include the use of chemical and biochemical tests for the detection of highly degraded biological samples typically found at crime scenes; developing new DNA isolation and DNA typing procedures for the analysis of challenging biological samples. Dr. Bilous is interested in evaluating the capabilities of portable analytical instruments such as the RAMAN spectrometer to identify forensic evidence at crime scenes. Educational interests include the use of problem-based learning approaches to properly prepare students for the challenges of forensic science casework.

    Nicholas E. Burgis, PhD

    Associate Professor of Chemistry
    Science Building, SCI 204A
    Phone: 509.359.7901
    Curriculum Vitae

    Dr. Burgis was trained in the fields of DNA repair and toxicology.  He earned his Ph.D. from The University at Albany, S.U.N.Y. and his post-doctoral training at the Massachusetts Institute of Technology. His current research interests focus on understanding the mechanisms of nucleotide metabolism, toxicology and chemoresistance using biochemical techniques.  His lab is currently investigating the mechanism of substrate specificity and catalysis of ITPase; a key enzyme important for the exclusion of noncanonical purines from nucleic acid precursor pools.  By studying the human ITPase, and orthologs in other organisms, his lab aims to contribute to the fields of cardiovascular development, purine metabolism, cancer development, drug metabolism and bioterrorism. Additional projects aim to understand links between DNA damage and protein metabolism.  Techniques used in this research program include molecular cloning, protein purification, biochemical assays (including enzyme kinetics) drug sensitivity assays and the use of tissue culture.  Dr. Burgis' research program is supported by external grants from the American Heart Association and American Cancer Society.  He is currently serves on the American Chemical Society Biochemistry Examination Committee and is Editor-In-Chief of the Open-Access Journal of Bioterrorism and Biodefense.


    Selected publications:

    Gall, A.D., Gall, A, Heid, S. Mori, A., Aune, M., Moore, A.C., and Burgis, N.E.  (2013) Analysis of human ITPase nucleobase specificity by site-directed mutagenesis. Biochimie 95(9): 1711-1721.  

    Sipes, R.K., Xue, X., Lewis, B.S., and Burgis, N.E. (2012) Evidence that aberrant protein metabolism contributes to chemoresistance in multiple myeloma cells.  Oncology Reports 27(6): 2031-2038. 

    Pang, B., McFaline, J.L., Burgis, N.E., Dong, M., Taghizadeh, K., Sullivan, M.R., Elmquist, C.E., Cunningham, R.P., Dedon, P.C. (2012) Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA. Proceedings of the National Academy of Sciences 109(7):2319-24.  

    Herting, G., Barber, K., Zappala, M.R., Cunningham R.P. and  Burgis, N.E. (2010) Quantitative in vitro and in vivo characterization of the human P32T mutant ITPase. Biochimica Et Biophysica Acta- Molecular Basis for Disease 1802(2): 269-274.   

    Burgis, N.E. and Samson, L. D. (2007) The protein degradation response of Saccharomyces cerevisiae to classical DNA-damaging agents. Chemical Research in Toxicology, 20(12): 1843-1853.   

    Burgis, N.E. and Cunningham, R.P. (2007) Substrate specificity of the RdgB protein, a deoxyribonucleoside triphosphate pyrophosphohydrolase. Journal of Biological Chemistry, 282(6): 3531-8.   

    Burgis, N.E., Brucker, J.J. and Cunningham, R.P. (2003) Repair system for noncanonical purines in Escherichia coli. Journal of Bacteriology, 185(10):3101-10.

    Jeffrey A. Corkill, PhD

    Professor of Chemistry
    Science Building, SCI 232
    Phone: 509.359.6518
    Curriculum Vitae

    PhD, University of Exeter

    Jeff Corkill's interests include: the use of gas and liquid chromatography-mass spectrometry in the analysis of organic compounds in (i) smoke derived from agricultural and silvicultural burning practices, (ii) chemical communication between conifer during herbivory, (iii) pesticide residues in organic and conventional food; integration on state-of-the-art chemical laboratory and the development of course internet-based lecture notes.

    Mrs. N'vida Houndonougbo

    Part-time Chemistry Faculty
    Science Building, SCI 297A
    Phone: 509.359.7461

    MS, Organic Chemistry, University of Kansas
    BS, Clinical Laboratory, Kansas Medical Center
    BS, Chemistry, University of Paris XII (France) 

    Yao Houndonougbo, PhD

    Associate Professor of Chemistry
    Science Building, SCI 230
    Phone: 509.359.4332
    Curriculum Vitae

    Yao Houndonougbo, Assistant Professor, PhD, University of Kansas, Lawrence

    Dr. Houndonougbo's research interests involve the use of statistical mechanics, numerical analysis, molecular dynamics amd Monte Carlo simulations, quantum mechanics, protein-protein docking, bioinformatics methods, gas adsorption and storage and protein-protein interactions. Current research projects include:

    Janelle Jenkins, PhD

    Chemistry Lecturer
    Science Building, SCI224
    Phone: 509.359.7931
    Dr. Jenelle Jenkins earned her PhD in chemistry from Arizona State University. 

    Ashley Lamm, PhD

    Assistant Professor of Chemistry
    Science Building, SCI 234A
    Phone: 509.359.7932

    Daniel Love, PhD

    Chemistry Lecturer
    Science Building, SCI 214
    Phone: 509.359.6138
    Curriculum Vitae

    Daniel Love, Lecturer, PhD, University of Pittsburgh

    Daniel Love's current research and interest lie with the development of lecture demonstrations to promote student understanding of chemical principles. He is also interested in the integration of computer molecular modeling methods into chemical education.

    Jamie Manson, PhD

    Professor of Chemistry
    Science Building, SCI 202A
    Phone: 509.359.2878
    Curriculum Vitae

    Jamie Manson, Associate Professor, PhD, University of Utah

    Jamie Manson's research involves design, synthesis and detailed characterization of novel molecule-based quantum magnets that present interesting properties. Coordination chemistry and the self-assembly of 1-, 2- and 3-dimensional polymeric networks that feature strong hydrogen bonds. He conducts  x-ray studies of new magnets to understand the structure/property relationships.   

    Tony Masiello, PhD

    Assistant Professor of Chemistry
    Science Building, SCI 228
    Phone: 509.359.6519
    Curriculum Vitae

    Dr. Masiello's research interest is focused on utilizing spectroscopic techniques to characterize, detect, and quantify gas phase chemicals.  The characterization of chemicals is accomplished through the analysis of high resolution (~0.001 cm-1) infrared and Raman spectra.  This analysis yields important information regarding molecular structural parameters such as precise bond lengths and bond angles, as well as yielding information regarding the bonding energy between atoms in a molecule.  Chemical concentrations are determined through analysis of low resolution (~0.125 cm-1) infrared spectra and has been used to 1) validate chemical agent detectors, 2) determine temperature dependent vapor pressure and enthalpy of vaporization parameters, as well as 3) determine Henry's Law constants.  Addition research interests involve the use of cavity enhanced techniques such as cavity ringdown spectroscopy and integrated cavity output spectroscopy to detect chemicals at trace levels. Current projects involve investigating reaction rates of ozone with anthropogenically produced carbon compounds as well as developing methods that increase the precision to which chemical concentrations are reported. 

    Robin McRae, PhD

    Professor of Chemistry, Department Chair
    Science Building, SCI 222
    Phone: 509.359.2798
    Curriculum Vitae

    Robin McRae, Professor, Chair, PhD, University of California, Berkeley

    Robin McRae's research covers many theoretical aspects of chemical physics of liquids. Specific research topics include theory of first-order phase transitions (particularly freezing), dynamics of solvated reactions, kinetic theory of liquids and the kinetics of phase transitions (e.g. nucleation theory). Use of computers in chemistry, both for computation and experiment interface is also an area of interest. 

    Jeffrey A. Rahn, PhD

    Professor of Chemistry
    Science Building, SCI 218
    Phone: 509.359.6069

    Jeffrey A. Rahn, Professor, PhD, University of Nevada-Reno

    Jeffrey Rahn's interests include the synthesis and characterization of transition metal complexes to better understand structure/reactivity relationships, the synthesis of inorganic polymers as precursors to ceramic materials and the development of chemical demonstrations to aid student understanding of chemical principles.

    Kenneth W. Raymond, PhD

    Professor of Chemistry
    Science Building, SCI 220
    Phone: 509.359.6520
    Curriculum Vitae

    Kenneth W. Raymond, Professor, PhD, University of Washington

    Kenneth Raymond's interests lie in the investigation of bistability and oscillations in enzymatic reactions.

    Wes E. Steiner, PhD

    Associate Professor of Chemistry
    Science Building, SCI 216
    Phone: 509.359.6521

    Dr. Steiner earned his Ph.D. in Analytical Chemistry with focus on the development and use of analytical instrumentation to explore a variety of topics involving health, environment, agriculture, and defense. Presently his research group is interested in applications that are focused on the qualitative discovery and quantitative directed analysis of bio-markers that can be correlated to a specific disease trait, state, and/or rate. This in turn, has helped to facilitate the process for an earlier and more precise diagnosis, treatment, and possible prevention of that disease.   


    Contact Information

    Department of Chemistry & Biochemistry
    226 Science Building
    Cheney, WA 99004

    phone: 509.359.2447
    fax: 509.359.6973

    Footer Navigation

    Text Only Options

    View the original version of this page.